The 2019 EDRM TAR Guidelines: Recognizing the Evolving Role of the Subject Matter Expert
While the Guidelines maintain the role of the SME in ensuring reviewer accuracy and assisting in training the model, they also acknowledge the emergence of new technologies which can reduce the burden on the SME.
April 09, 2019 at 07:00 AM
5 minute read
After reading the new Technology Assisted Review (TAR) Guidelines from EDRM, it is clear that the evolution of the underlying technology in TAR solutions is reshaping the role of the subject matter expert (SME). While the Guidelines maintain the role of the SME—typically an experienced (and expensive) attorney most familiar with the project's subject matter—in ensuring reviewer accuracy and assisting in training the model, they also acknowledge the emergence of new technologies which can reduce the burden on the SME.
Newer active learning solutions allow for a continuous training of the model through a prioritized review. This spares the SME the review of multiple training and QC rounds associated with TAR 1.0 solutions, and allows more time for more targeted training. TAR 1.0 solutions can take more time to train the model, whereas the training of the active learning model begins after reviewing a smaller threshold amount of documents.
Training sets, traditionally a TAR 1.0 feature, are offered with some active learning solutions. These allow the SME to elevate training through an isolated review of conceptually-rich key documents, while the review team focuses on the prioritized review queue. The training set can either be a completely randomized sample across the corpus, or a seed set supplemented with a randomized sample. This approach aims to minimize bias while still injecting richness in the sample.
The Guidelines acknowledge that there are different views for the best method of selecting training sets. The different approaches result from varying levels of concern over bias in the training set by relying on “human judgment” or “differing preferences by human reviewers” to select the documents. The Guidelines instruct that any approach to selecting training data will produce an effective predictive model if it is used to produce a sufficiently broad training set. “Thus, differing views over selection of training data are less about whether an effective predictive model can be produced, than about how much work it will take to do so.”
Newer TAR solutions alleviate the burden of training in other ways. In some platforms, multiple models can run concurrently. This allows a reviewer training for relevance to simultaneously train for privilege or specific issues, thereby cutting back on costly re-review efforts.
Active learning solutions can also more easily address the challenge of supplemental collections. With earlier (TAR 1.0) solutions, when new datasets introduced new document features or concepts to the corpus, the model would need additional training in order to properly understand and categorize these new document types. Due to the static nature of the predictive coding index, each addition of this type would require the process of training to be started anew. This included the rebuilding of the index and repetition of the human review process. This redoubled review effort can include coding a seed set, and conducting the numerous rounds of training and QC review to reach stability.
With an active learning solution, since the model is continuously learning and improving its predictions, it can leverage its existing training to incorporate the new collection. This prevents the need to “start from scratch.”
With more time savings in model training through active learning, the SME can lend more of their expertise in QC review. In active learning solutions, differences between human coding decisions and model predictions are typically served up in two separate conflicts queues. These queues can be batched out or sampled for SME review. Where the documents in the project are comprised of user-created content and represent multiple concepts, the data set is considered to have a high conceptual richness. This may lead to a higher percentage of documents with features that the predictive coding model does not understand, which then can lead to disparate confidence levels and document populations with low coverage, posing a challenge to training.
The model's understanding of these documents and resulting prediction scores can be improved by training the system on more documents from lower coverage sets. To address this problem, some of today's active learning solutions have coverage queues and visualizations which eliminate the need for complex saved searches to review these sets. The SME can, therefore, easily sample documents from these sets to improve predictions for the greater review team.
With earlier TAR technologies, the SME might have been heavily involved with training the model throughout the life of the project. The newer features of today's active learning solutions can help to alleviate their burden and allow them to have time for other priorities. In providing a lower barrier to implementation, both in time and cost savings, active learning has become a more attractive option for fulfilling the proportionality and reasonableness of review requirements, both for the end client and the SME.
Erin Baksa is a Senior Business Development Manager at Everlaw. Prior to Everlaw, she worked in ediscovery consulting as a Senior Manager for the Forensic Technology Services team at A&M Asia in Hong Kong. Previous consulting firms include Stroz Friedberg and DTI. Erin is a licensed attorney and has worked in the litigation industry for over 10 years.
This content has been archived. It is available through our partners, LexisNexis® and Bloomberg Law.
To view this content, please continue to their sites.
Not a Lexis Subscriber?
Subscribe Now
Not a Bloomberg Law Subscriber?
Subscribe Now
NOT FOR REPRINT
© 2025 ALM Global, LLC, All Rights Reserved. Request academic re-use from www.copyright.com. All other uses, submit a request to [email protected]. For more information visit Asset & Logo Licensing.
You Might Like
View AllTrending Stories
- 1Gibbons Reps Asylum Seekers in $6M Suit Over 2018 ‘Inhumane’ Immigration Policy
- 2DC Judge Chutkan Allows Jenner's $8M Unpaid Legal Fees Lawsuit to Proceed Against Sierra Leone
- 3Internal Whistleblowing Surged Globally in 2024, So Why Were US Numbers Flat?
- 4In Resolved Lawsuit, Jim Walden Alleged 'Retaliatory' Silencing by X of His Personal Social Media Account
- 5Government Attorneys Face Reassignment, Rescinded Job Offers in First Days of Trump Administration
Who Got The Work
J. Brugh Lower of Gibbons has entered an appearance for industrial equipment supplier Devco Corporation in a pending trademark infringement lawsuit. The suit, accusing the defendant of selling knock-off Graco products, was filed Dec. 18 in New Jersey District Court by Rivkin Radler on behalf of Graco Inc. and Graco Minnesota. The case, assigned to U.S. District Judge Zahid N. Quraishi, is 3:24-cv-11294, Graco Inc. et al v. Devco Corporation.
Who Got The Work
Rebecca Maller-Stein and Kent A. Yalowitz of Arnold & Porter Kaye Scholer have entered their appearances for Hanaco Venture Capital and its executives, Lior Prosor and David Frankel, in a pending securities lawsuit. The action, filed on Dec. 24 in New York Southern District Court by Zell, Aron & Co. on behalf of Goldeneye Advisors, accuses the defendants of negligently and fraudulently managing the plaintiff's $1 million investment. The case, assigned to U.S. District Judge Vernon S. Broderick, is 1:24-cv-09918, Goldeneye Advisors, LLC v. Hanaco Venture Capital, Ltd. et al.
Who Got The Work
Attorneys from A&O Shearman has stepped in as defense counsel for Toronto-Dominion Bank and other defendants in a pending securities class action. The suit, filed Dec. 11 in New York Southern District Court by Bleichmar Fonti & Auld, accuses the defendants of concealing the bank's 'pervasive' deficiencies in regards to its compliance with the Bank Secrecy Act and the quality of its anti-money laundering controls. The case, assigned to U.S. District Judge Arun Subramanian, is 1:24-cv-09445, Gonzalez v. The Toronto-Dominion Bank et al.
Who Got The Work
Crown Castle International, a Pennsylvania company providing shared communications infrastructure, has turned to Luke D. Wolf of Gordon Rees Scully Mansukhani to fend off a pending breach-of-contract lawsuit. The court action, filed Nov. 25 in Michigan Eastern District Court by Hooper Hathaway PC on behalf of The Town Residences LLC, accuses Crown Castle of failing to transfer approximately $30,000 in utility payments from T-Mobile in breach of a roof-top lease and assignment agreement. The case, assigned to U.S. District Judge Susan K. Declercq, is 2:24-cv-13131, The Town Residences LLC v. T-Mobile US, Inc. et al.
Who Got The Work
Wilfred P. Coronato and Daniel M. Schwartz of McCarter & English have stepped in as defense counsel to Electrolux Home Products Inc. in a pending product liability lawsuit. The court action, filed Nov. 26 in New York Eastern District Court by Poulos Lopiccolo PC and Nagel Rice LLP on behalf of David Stern, alleges that the defendant's refrigerators’ drawers and shelving repeatedly break and fall apart within months after purchase. The case, assigned to U.S. District Judge Joan M. Azrack, is 2:24-cv-08204, Stern v. Electrolux Home Products, Inc.
Featured Firms
Law Offices of Gary Martin Hays & Associates, P.C.
(470) 294-1674
Law Offices of Mark E. Salomone
(857) 444-6468
Smith & Hassler
(713) 739-1250