The evolution of the automotive industry in the United States continues, changing from traditional to “highly automated” vehicles (HAVs). Pennsylvania has actively participated thus far, and it appears the commonwealth aspires to gain recognition as a leader in the movement. As the transformation from traditional vehicles to HAVs continues—hopefully to the point where all crashes are eliminated—civil trial lawyers in Pennsylvania must continue to play a role in the process.

Anyone reading this article has either operated or has been a passenger in a traditional vehicle—one that requires the knowledge, skill and effort of a human being to navigate our current system of roadways. Motor vehicles have been around since the early 1900s and have continually made technological and safety advancements throughout their history. The most recent advances in research and development indicate that truly self-driving cars are in the immediate future. Someday soon, we may no longer be the drivers of our own cars.

What Constitutes a Highly Automated Vehicle?

According to most definitions, an HAV is a vehicle that performs dynamic driving tasks through the use of a combination of hardware, software, cameras, lasers, sensors and actuators. Partially autonomous vehicles, meaning those that require input and intervention from a human driver, exist on our roadways today. Fully autonomous or driverless vehicles, however, have not hit the streets just yet.

As driverless car research and development continues, SAE International, a worldwide association of engineers and experts in various commercial vehicle industries, has organized automated vehicles into six categories from zero to five: Level 0 vehicles must be driven by a human and do not offer any automation. Level 1 through Level 3 vehicles offer some autonomous capabilities, essentially offering increased collision-avoidance technology (CAT) features and more automation at each level. For example, a Level 3 vehicle on the market today may offer CAT features such as blind-spot detection, lane departure warning and control, automatic braking with collision warning, and some form of auto-pilot, however, each still requires input and intervention from a human driver. Simply stated, Level 4 vehicles can operate with human intervention, but really do not need us to perform dynamic driving tasks. Level 5 vehicles are fully autonomous and driverless. Some manufactures will not even include steering wheels or other controls in their models.

How Will Fully Automated Vehicles Work?

Once implemented and integrated into our transportation system, if the fully automated or self-driving vehicle is “connected,” the car will actually communicate with other vehicles on the road and with the infrastructure in place to support full automation. Once connected, the vehicle's highly automated driving system will create and maintain an internal map of its surroundings—which will include traffic signals, other vehicles, pedestrians and other markers that the vehicle's system will detect to keep it operating safely on the roadway. The car's system will plot its path and basically send instructions to the actuators to accelerate, turn and brake the car, so a human becomes nothing more than a mere passenger. If the vehicle is not fully connected, the vehicle will presumably still rely on some level of communication, such as with other vehicles on the road perhaps, to allow its safe operation.

HAV Transformation Process

In Pennsylvania, researchers and manufacturers of various HAV technologies have already begun testing on our roads. For example, as of September 2016 and to this date, Uber has begun and continues testing its self-driving vehicles in Pittsburgh. Carnegie Melon University researchers have played a prominent role as well, developing the General Motors-Carnegie Mellon Connected and Autonomous Driving Collaborative Research Laboratory.